home | iBib | list | admin

BibTeX file of [Reinke24] [show it without abstract]

@article{Reinke24,
    author={Patrick Y. A. Reinke and Robin Schubert and Dominik Oberth{\"u}r and Marina Galchenkova and Aida Rahmani Mashhour and Sebastian G{\"u}nther and Ana{\"\i}s Chretien and Adam Round and Brandon Charles Seychell and Brenna Norton-Baker and Chan Kim and Christina Schmidt and Faisal H. M. Koua and Alexandra Tolstikova and Wiebke Ewert and Gisel Esperanza Pe{\~n}a Murillo and Grant Mills and Henry Kirkwood and H{\'e}vila Brognaro and Huijong Han and Jayanath Koliyadu and Joachim Schulz and Johan Bielecki and Julia Lieske and Julia Maracke and Juraj Knoska and Kristina Lorenzen and Lea Brings and Marcin Sikorski and Marco Kloos and Mohammad Vakili and Patrik Vagovic and Philipp Middendorf and Raphael de Wijn and Richard Bean and Romain Letrun and Seonghyun Han and Sven Falke and Tian Geng and Tokushi Sato and Vasundara Srinivasan and Yoonhee Kim and Oleksandr M. Yefanov and Luca Gelisio and Tobias Beck and Andrew S. Dor{\'e} and Adrian P. Mancuso and Christian Betzel and Sa{\v s}a Bajt and Lars Redecke and Henry N. Chapman and Alke Meents and Du{\v s}an Turk and Winfried Hinrichs and Thomas J. Lane},
    title={{SARS-CoV-2} {M}$^{pro}$ responds to oxidation by forming disulfide and {NOS/SONOS} bonds},
    journal={Nat. Commun.},
    volume={15},
    pages={3827},
    year={2024},
    keywords={corona; covid; European XFEL;},
    url={https://doi.org/10.1038/s41467-024-48109-3},
    doi={10.1038/s41467-024-48109-3},
    abstract={The main protease (M$^{pro}$) of SARS-CoV-2 is critical for viral function and a key drug target. M$^{pro}$ is only active when reduced; turnover ceases upon oxidation but is restored by re-reduction. This suggests the system has evolved to survive periods in an oxidative environment, but the mechanism of this protection has not been confirmed. Here, we report a crystal structure of oxidized M$^{pro}$ showing a disulfide bond between the active site cysteine, C145, and a distal cysteine, C117. Previous work proposed this disulfide provides the mechanism of protection from irreversible oxidation. M$^{pro}$ forms an obligate homodimer, and the C117-C145 structure shows disruption of interactions bridging the dimer interface, implying a correlation between oxidation and dimerization. We confirm dimer stability is weakened in solution upon oxidation. Finally, we observe the protein¡¯s crystallization behavior is linked to its redox state. Oxidized M$^{pro}$ spontaneously forms a distinct, more loosely packed lattice. Seeding with crystals of this lattice yields a structure with an oxidation pattern incorporating one cysteine-lysine-cysteine (SONOS) and two lysine-cysteine (NOS) bridges. These structures further our understanding of the oxidative regulation of M$^{pro}$ and the crystallization conditions necessary to study this structurally.
    } }



Patrick Y.A. Reinke, Robin Schubert, Dominik Oberthür, Marina Galchenkova, Aida Rahmani Mashhour, Sebastian Günther, Anaïs Chretien, Adam Round, Brandon Charles Seychell, Brenna Norton-Baker, Chan Kim, Christina Schmidt, Faisal H.M. Koua, Alexandra Tolstikova, Wiebke Ewert, Gisel Esperanza Peña Murillo, Grant Mills, Henry Kirkwood, Hévila Brognaro, Huijong Han, Jayanath Koliyadu, Joachim Schulz, Johan Bielecki, Julia Lieske, Julia Maracke, Juraj Knoska, Kristina Lorenzen, Lea Brings, Marcin Sikorski, Marco Kloos, Mohammad Vakili, Patrik Vagovic, Philipp Middendorf, Raphael de Wijn, Richard Bean, Romain Letrun, Seonghyun Han, Sven Falke, Tian Geng, Tokushi Sato, Vasundara Srinivasan, Yoonhee Kim, Oleksandr M. Yefanov, Luca Gelisio, Tobias Beck, Andrew S. Doré, Adrian P. Mancuso, Christian Betzel, Saša Bajt, Lars Redecke, Henry N. Chapman, Alke Meents, Dušan Turk, Winfried Hinrichs, and Thomas J. Lane, SARS-CoV-2 Mpro responds to oxidation by forming disulfide and NOS/SONOS bonds, Nat. Commun. 15, 3827 (2024) [pdf][pdf][abstract][abstract][link]doi:10.1038/s41467-024-48109-3


made by ZN / powered by Bibliophile

"