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Abstract
We extend the many-mode Floquet theorem (MMFT)1) for 
the investigation of high harmonic generation of a two-level 
system driven by intense frequency-comb laser fields.  The 
frequency comb structure generated by a train of short laser 
pulses can be represented by a combination of the main 
frequency and the repetition frequency.  The MMFT allows 
non-perturbative and accurate treatment of the interaction of 
a quantum system with the frequency comb laser fields.  We 
observe that harmonic generation of the two-level system is 
dramatically enhanced by controlling the repetition frequency 
and the phase difference between pulses, due to simultaneous 
resonances.



Introduction

• A train of pulses generates the comb structure in the 
frequency domain due to quantum interference by the 
phase difference between pulses2).

• The time interval between pulses τ and the pulse-to-
pulse carrier-envelope phase (CEP) shift Δϕ stabilize 
comb frequencies3).

• Harmonic generation driven by comb laser is expected 
to have the comb structure4).
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We stabilized the carrier-envelope phase of the pulses emitted by a femto-
second mode-locked laser by using the powerful tools of frequency-domain
laser stabilization. We confirmed control of the pulse-to-pulse carrier-envelope
phase using temporal cross correlation. This phase stabilization locks the ab-
solute frequencies emitted by the laser, which we used to perform absolute
optical frequency measurements that were directly referenced to a stable
microwave clock.

Progress in femtosecond pulse generation has
made it possible to generate optical pulses that
are only a few cycles in duration (1–4 ). This
has resulted in rapidly growing interest in con-
trolling the phase of the underlying carrier wave
with respect to the envelope (1, 5–7 ). The
absolute carrier phase is normally not important
in optics; however, for such ultrashort pulses, it
can have physical consequences (6, 8 ). Concur-
rently, mode-locked lasers, which generate a
train of ultrashort pulses, have become an im-
portant tool in precision optical frequency mea-
surement (9 –14 ). There is a close connection
between these two apparently disparate topics.
We exploited this connection to develop a fre-
quency domain technique that stabilizes the
carrier phase with respect to the pulse envelope.
Using the same technique, we performed abso-
lute optical frequency measurements using a
single mode-locked laser with the only input
being a stable microwave clock.

Mode-locked lasers generate a repetitive
train of ultrashort optical pulses by fixing the
relative phases of all of the lasing longitudi-
nal modes (15). Current mode-locking tech-
niques are effective over such a large band-
width that the resulting pulses can have a
duration of 6 fs or shorter, i.e., approximately
two optical cycles (2– 4 ). With such ultra-
short pulses, the relative phase between peak
of the pulse envelope and the underlying
electric-field carrier wave becomes relevant.
In general, this phase is not constant from
pulse to pulse because the group and phase

velocities differ inside the laser cavity (Fig.
1A). To date, techniques of phase control of
femtosecond pulses have employed time do-
main methods (5). However, these techniques
have not used active feedback, and rapid
dephasing occurs because of pulse energy
fluctuations and other perturbations inside the

cavity. Active control of the relative carrier-
envelope phase prepares a stable pulse-to-
pulse phase relation, as presented below, and
will dramatically impact extreme nonlinear
optics.

Although it may be natural to think about
the carrier-envelope phase in the time do-
main, it is also apparent in a high-resolution
measurement of the frequency spectrum. The
output spectrum of a mode-locked laser con-
sists of a comb of optical frequencies sepa-
rated by the repetition rate. However, the
comb frequencies are not necessarily integer
multiples of the repetition rate; they may also
have an offset (Fig. 1B). This offset is due to
the difference between the group and phase
velocities. Control of the carrier-envelope
phase is equivalent to control of the absolute
optical frequencies of the comb, and vice
versa. This means that the same control of the
carrier-envelope phase will also result in a
revolutionary technique for optical frequency
metrology that directly connects the micro-
wave cesium frequency standard to the opti-
cal frequency domain with a single laser (14 ).

We used a self-referencing technique to
control the absolute frequencies of the optical
comb generated by a mode-locked laser.
Through the relation between time and fre-
quency described below, this method also
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Fig. 1. Time-frequency correspondence and relation between !" and #. (A) In the time domain, the
relative phase between the carrier (solid) and the envelope (dotted) evolves from pulse to pulse by
the amount !". Generally, the absolute phase is given by " $ !"(t/%) & "0, where "0 is an
unknown overall constant phase. (B) In the frequency domain, the elements of the frequency comb
of a mode-locked pulse train are spaced by frep. The entire comb (solid) is offset from integer
multiples (dotted) of frep by an offset frequency # $ !"f rep/2'. Without active stabilization, # is
a dynamic quantity, which is sensitive to perturbation of the laser. Hence, !" changes in a
nondeterministic manner from pulse to pulse in an unstabilized laser.
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In the time domain* In the frequency domain*
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* Pictures taken from Cundiff et al., Rev. Sci. Instrum. 72, 3749 (2001)

f(t) = f0e
−t2/2σ2



|αnm⟩ = |α⟩ ⊗ |n⟩ ⊗ |m⟩Generalized Floquet basis state5):

H(r, t) = Ĥ0(r) −
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= Ĥ0(r) −
1
2

N
∑

k=−N
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Time-dependent 
Hamiltonian
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From MMFT1,5), the time-dependent problem can be transformed into 
a time-independent infinite-dimensional matrix eigenvalue problem.



Floquet matrix 
structure
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Comb laser: 2.5×1015 W/cm2, 532 nm, frep=10 THz, 20 fs FWHM Gaussian pulses
Two-level system: 
Quasienergy: 

ωαβ = εβ − εα, ⟨α|z|β⟩ = 0.1 a.u.

λγmn = λγ + nω0 + mωr (n, m : integer)
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Plot of transition probabilities 
as a function of Δϕ

3-photon dominant resonance cases:

one-mode: ωres = nω

comb: ωres ≡ nω (mod ωr)

n-photon resonance condition

ω̃r =
ωres − nω0

k

ω̃r =
ωres

k

∆φ̃ = 2π

(

ωδ

ωr

+
l

n

)

, (0 ≤ l < n)
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Enhancement of HHG 
by controlling Δϕ to 

tune resonances

1×1014 W/cm2, 532 nm, frep=10 THz, 
20 fs FWHM Gaussian pulses
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FIG. 3: Plots of time-averaged transition probabilities as a
functions of the CEP shift. It shows 3 resonance positions
separated by 2�/3 due to 3-photon dominant resonance.

ger, as shown much denser than (a). Consequently, if the
CEP shift and the repetition frequency are controllable
at the same time, there are more chances to tune mul-
tiphoton resonances, emphasizing importance of phase
control.

When the repetition frequency is fixed and the CEP
shift is varied, it is possible to tune n times for n-photon
dominant resonance where n is an odd number. If combs
with the o⇥set ⇤� are n-photon resonant with ⇤res,

⇤res ⇥ n⇤� (mod ⇤r), (28)

then ⇤� + l
n⇤r (l: integer, 0 ⇤ l < n) are also n-photon

resonant with ⇤res because of simultaneous multiphoton
resonances. The resonance condition of combs with the
o⇥set ⇤� + l

n⇤r reads

⇤res ⇥ n

�
⇤� +

l

n
⇤r

⇥
(mod ⇤r)

⇤res ⇥ n⇤� (mod ⇤r). (29)

The CEP shift of combs with the o⇥set ⇤� + l
n⇤r is given

by

�⇥ = 2�

�
⇤�

⇤r
+

l

n

⇥
(0 ⇤ l < n), (30)

so that resonance peak positions in �⇥ are separated by
2�/n. Fig. 3 shows time-averaged transition probabili-
ties as a function of the CEP shift with the repetition
frequency 10 THz and the same laser parameters. This
is the case of 3-photon dominant resonance, so it is tuned
3 times by controlling the CEP shift, and these 3 peaks
are separated by 2�/3 exactly.

We perform HHG calculation with the two-level system
by frequency-comb laser, as shown in Fig. 4. Incident
comb laser has a peak intensity 2.5� 1015 W/cm2 and a
carrier frequency 563.5 THz with a repetition frequency
10 THz (⇤r = 1.51983 � 10�3 a.u.) of 20 fs FWHM
Gaussian pulses. The main frequency is equal to the
carrier frequency, so the o⇥set angular frequency is forced
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FIG. 4: Power spectra of HHG by frequency-comb laser with
the two-level system. Each harmonic has comb structure as
clearly shown in the inset for the 5th harmonic.
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FIG. 5: Enhancement of HHG by controlling the CEP shift in
the peak intensity 1 � 1014 W/cm2. For clarity, HHG peaks
of the comb structure are connected by a line.

to ⇤0 (mod ⇤r). Because the n-th harmonic of combs
{⇤0 +k⇤r} is given by {n⇤0 +k⇤r}, HHG forms a nested
comb structure for each harmonic[13, 19] with the same
repetition angular frequency ⇤r and the o⇥set angular
frequency of n⇤0 (mod ⇤r). Each broad peak in Fig. 4
consists of sharp frequency lines spaced by ⇤r with the
o⇥set di⇥erently given for each harmonic. For instance,
the comb structure of the 5-th harmonic is clearly shown
in the inset in Fig. 4. The HHG calculation by MMFT
enables us to determine the absolute comb position and
the comb separation of each harmonic.

To investigate e⇥ects of multiphoton resonances on
HHG, we can compare power spectra when comb laser
is resonant and non-resonant with the system by control-
ling the CEP shift. Fig. 5 shows enhancement of HHG
by changing the CEP shift from �⇥/2� = 0.1 (non-
resonance) to 0.168295 (resonance). Other parameters
for comb laser and the system are the same as Fig. 4 ex-
cept the peak intensity 1 � 1014 W/cm2. Table I lists
the power spectrum values of the maximum peak for
non-resonance and resonance cases with di⇥erent peak
intensities. Fig. 5 and Table I show that HHG peaks
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TABLE I: E⇥ects on the power spectra by controlling the CEP shift �⇥. q is the harmonic order of the maximum peak

for each harmonic. The label A indicates �⇥/2� = 0.1 that shows no resonance, while B indicates the resonance cases:

�⇥/2� = 0.168295, 0.206534, and 0.269741 for 1⇥ 10
14

, 1⇥ 10
15

, and 2.5⇥ 10
15

W/cm
2
, respectively. The number in brackets

indicates the power of 10.

1⇥ 10
14

W/cm
2

1⇥ 10
15

W/cm
2

2.5⇥ 10
15

W/cm
2

A B A B A B

q P (q⇤c) q P (q⇤c) q P (q⇤c) q P (q⇤c) q P (q⇤c) q P (q⇤c)

2.92 9.15[�11] 2.92 2.50[�3] 2.92 7.07[�8] 2.92 2.41[�3] 2.92 1.33[�6] 2.92 2.01[�3]

5.00 4.53[�20] 4.91 3.42[�12] 5.00 6.62[�15] 4.93 3.39[�10] 5.00 1.28[�12] 4.94 2.07[�9]

7.02 1.99[�28] 6.92 1.83[�20] 7.00 3.10[�21] 6.93 1.82[�16] 7.00 4.13[�18] 6.95 6.82[�15]

9.03 5.58[�37] 8.92 4.07[�29] 9.01 6.00[�28] 8.92 3.99[�23] 9.01 5.30[�24] 8.95 9.40[�21]

11.02 5.45[�35] 10.92 4.04[�30] 11.00 3.14[�30] 10.95 5.95[�27]

12.98 1.05[�36] 12.95 1.96[�33]

are dramatically enhanced by controlling the CEP shift
due to simultaneous multiphoton resonance. The power
spectra of 1� 1014 W/cm2 are enhanced by order of 108

times, ones of 1� 1015 W/cm2 by 105 times, and ones of
2.5� 1015 W/cm2 by 103 times.

V. CONCLUSION

A train of short laser pulses generates spectral combs
in the frequency domain, that are expressed by the main
frequency and the repetition frequency. The many-mode

Floquet theorem is extended to accurately solve inter-
action between the quantum system and frequency-comb
laser. We have showed that multiphoton resonances with
the system and comb laser can be tuned by controlling
the repetition frequency and the pulse-to-pulse carrier-
envelope phase shift. HHG driven by intense frequency-
comb laser has the comb structure with the same repe-
tition frequency and di�erent o�set for each harmonic.
Moreover, HHG shows immense enhancement by tuning
the carrier-envelope phase shift due to simultaneous mul-
tiphoton resonance among comb frequencies.
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Conclusion

• The frequency-comb structure can be expressed by the 
main frequency and the repetition frequency.

• Multiphoton resonances with the system and comb laser 
can be achieved by controlling the repetition frequency 
and the CEP shift.

• HHG driven by intense frequency-comb laser has the 
comb structure with the same repetition frequency and 
different offset for each harmonic.

• HHG shows immense enhancement by controlling the 
CEP shift due to simultaneous multiphoton resonance 
among comb frequencies.
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