Many-mode Floquet theoretical approach for probing high harmonic generation in intense frequency-comb laser fields

Son, Sang-Kil and Chu, Shih-I Department of Chemistry, University of Kansas

Abstract

We extend the many-mode Floquet theorem (MMFT)¹⁾ for the investigation of high harmonic generation of a two-level system driven by intense frequency-comb laser fields. The frequency comb structure generated by a train of short laser pulses can be represented by a combination of the main frequency and the repetition frequency. The MMFT allows non-perturbative and accurate treatment of the interaction of a quantum system with the frequency comb laser fields. We observe that harmonic generation of the two-level system is dramatically enhanced by controlling the repetition frequency and the phase difference between pulses, due to simultaneous resonances.

Introduction

- A train of pulses generates the comb structure in the frequency domain due to quantum interference by the phase difference between pulses²).
- The time interval between pulses τ and the pulse-topulse carrier-envelope phase (CEP) shift $\Delta \phi$ stabilize comb frequencies³.
- Harmonic generation driven by comb laser is expected to have the comb structure⁴).

Computational Details

In the time domain*

In the frequency domain*

* Pictures taken from Cundiff et al., Rev. Sci. Instrum. 72, 3749 (2001)

Time-dependent Hamiltonian

$$H(\mathbf{r},t) = \hat{H}_0(\mathbf{r}) - \sum_{k=-N}^{N} \boldsymbol{\mu}(\mathbf{r}) \cdot \mathbf{E}_k \, \Re\left[e^{i\omega_k t}\right]$$
$$= \hat{H}_0(\mathbf{r}) - \frac{1}{2} \sum_{k=-N}^{N} \hat{z} E_k \left(e^{i(\omega_0 + k\omega_r)t} + e^{-i(\omega_0 + k\omega_r)t}\right)$$

Generalized Floquet basis state⁵): $|\alpha nm\rangle = |\alpha\rangle \otimes |n\rangle \otimes |m\rangle$

$$H(\mathbf{r},t) = \sum_{n,m} H^{[n,m]}(\mathbf{r}) e^{-i(n\omega_0 + m\omega_r)t}$$

$$H^{[0,0]} = H_0$$

$$H^{[-1,0]} = H^{[+1,0]} = -\frac{1}{2}\hat{z}E_0$$

$$H^{[-1,-1]} = H^{[+1,+1]} = -\frac{1}{2}\hat{z}E_1, \quad H^{[-1,+1]} = H^{[+1,-1]} = -\frac{1}{2}\hat{z}E_{-1}$$

$$H^{[-1,-2]} = H^{[+1,+2]} = -\frac{1}{2}\hat{z}E_2, \quad H^{[-1,+2]} = H^{[+1,-2]} = -\frac{1}{2}\hat{z}E_{-2}$$

$$\vdots$$

$$H^{[-1,-N]} = H^{[+1,+N]} = -\frac{1}{2}\hat{z}E_N, \quad H^{[-1,+N]} = H^{[+1,-N]} = -\frac{1}{2}\hat{z}E_{-N}$$

From MMFT^{1,5}, the time-dependent problem can be transformed into a time-independent infinite-dimensional matrix eigenvalue problem.

$$\sum_{\beta} \sum_{n'} \sum_{m'} \langle \alpha nm | H_F | \beta n'm' \rangle \langle \beta n'm' | \lambda \rangle = \lambda \langle \alpha nm | \lambda \rangle$$

Results

Plot of quasienergies as a function of $\omega_{\alpha\beta}$

Comb laser: 2.5×10¹⁵ W/cm², 532 nm, f_{rep} =10 THz, 20 fs FWHM Gaussian pulses Two-level system: $\omega_{\alpha\beta} = \varepsilon_{\beta} - \varepsilon_{\alpha}$, $\langle \alpha | z | \beta \rangle = 0.1$ a.u. Quasienergy: $\lambda_{\gamma mn} = \lambda_{\gamma} + n\omega_0 + m\omega_r$ (n, m: integer)

3-photon dominant resonance cases:

Plot of transition probabilities as a function of $\Delta \varphi$

comb: $\omega_{\rm res} \equiv n\omega \pmod{\omega_r}$

Power spectra driven by intense comb laser field

n-th harmonic of combs: $\{n\omega_0 + k\omega_r\}$ combs repetition angular frequency: ω_r

offset angular frequency: $n\omega_0 \pmod{\omega_r}$

Enhancement of HHG by controlling Δφ to tune resonances

 1×10^{14} W/cm², 532 nm, $f_{rep}=10$ THz, 20 fs FWHM Gaussian pulses

$1 \times 10^{14} \text{ W/cm}^2$					$1 \times 10^{15} \text{ W/cm}^2$				$2.5 \times 10^{15} \text{ W/cm}^2$			
А		В			А		В		А		В	
q	$P(q\omega_c)$	q	$P(q\omega_c)$	q	$P(q\omega_c)$	q	$P(q\omega_c)$	q	$P(q\omega_c)$	q	$P(q\omega_c)$	
2.92	9.15[-11]	2.92	2.50[-3]	2.92	7.07[-8]	2.92	2.41[-3]	2.92	1.33[-6]	2.92	2.01[-3]	
5.00	4.53[-20]	4.91	3.42[-12]	5.00	6.62[-15]	4.93	3.39[-10]	5.00	1.28[-12]	4.94	2.07[-9]	
7.02	1.99[-28]	6.92	1.83[-20]	7.00	3.10[-21]	6.93	1.82[-16]	7.00	4.13[-18]	6.95	6.82[-15]	
9.03	5.58[-37]	8.92	4.07[-29]	9.01	6.00[-28]	8.92	3.99[-23]	9.01	5.30[-24]	8.95	9.40[-21]	
				11.02	5.45[-35]	10.92	4.04[-30]	11.00	3.14[-30]	10.95	5.95[-27]	
								12.98	1.05[-36]	12.95	1.96[-33]	

A: no resonance, $\Delta \phi / 2\pi = 0.1$

B: resonance, $\Delta \phi/2\pi = 0.168295$, 0.20634, and 0.269741 for 1×10^{14} , 1×10^{15} , and 2.5×10^{15} W/cm²

Conclusion

- The frequency-comb structure can be expressed by the main frequency and the repetition frequency.
- Multiphoton resonances with the system and comb laser can be achieved by controlling the repetition frequency and the CEP shift.
- HHG driven by intense frequency-comb laser has the comb structure with the same repetition frequency and different offset for each harmonic.
- HHG shows immense enhancement by controlling the CEP shift due to simultaneous multiphoton resonance among comb frequencies.

References

- I. S. I. Chu and D.A. Telnov, *Phys. Rep.* **390**, I (2004).
- 2. S.T. Cundiff and J.Ye, Rev. Mod. Phys. **75**, 325 (2003).
- 3. D. J. Jones, et al., Science 288, 635 (2000).
- 4. C. Gohle, et al., Nature 436, 234 (2005).
- 5. T. S. Ho, S. I. Chu, and J.V. Tietz, *Chem. Phys. Lett.* 96, 464 (1983); T. S. Ho and S. I. Chu, *J. Phys. B* 17, 2101 (1984); *Phys. Rev. A* 31, 659 (1985); *ibid* 32, 377 (1985).

