Two-component calculations for polyatomic hydrides and fluorides containing superheavy elements 113 and 114

<u>손 상 길</u>·한 영 규·이 윤 섭 한국과학기술원 화학과

Korea Advanced Institute of Science & Technology **한국과학기술**윆

Abstract

Superheavy elements have become the center of interest in theoretical chemistry for their unusual trends on the periodic table. Element 113 and 114 which have not been synthesized yet have $7s^2$ $7p_{1/2}^1$ and $7s^2$ $7p_{1/2}^2$ valence configurations, respectively. Considerable changes of molecular structures, vibrations, and stabilities are expected from spin-orbit interactions for molecules containing these superheavy elements since the $p_{1/2}$ valence is stabilized by enormous 7p spin-orbit splitting. For MX, MX₃ (M=TI, 113, X=H, F), MX₂, MX₄ (M=Pb, 114, X=H, F), we performed geometry optimizations and normal mode analysis at the HF level of theory, and evaluated the stabilities at the CCSD(T) level using relativistic effective core potential with and without spin-orbit interactions. Spin-orbit coupling contracts the bond lengths for all cases and the bond contraction is more significant for the hydrides than the fluorides. Normal mode analysis reveal that molecular shapes of 113 and 114 molecules are analogous to TI and Pb ones except for $113H_3$ and $113F_{3}$, and changes for vibrational frequencies of the hydrides are substantial. Spin–orbit interactions reduce bond energies by about 10~50 kcal/mol. The bonds become very weak and, in particular, element 114 seems to be chemically inert. These results can be explained by the stabilization and the relativistic radial contractions of the $p_{1/2}$ valence spinor by spin–orbit splitting.

Introduction.

12	2 1	13	14	1	5
----	-----	----	----	---	---

48	49	50	51
Cd	In	Sn	Sb
80	81	82	83
Hg	TI	Pb	Bi
112	113	114	115
112	113	114	115

- Superheavy element는 112번까지 합성되 었으며 113, 114번 원소를 합성하기 위한 노력이 진행중이다.
- 상대성효과는 원자번호가 커질수록 증가하 므로 5주기 이상 무거운 원소에 대해서는 상대론적 효과가 반드시 포함되어야 한다.
- 113, 114는 p-valence를 가지고 있으며 P state는 spin-orbit coupling에 의해서 P_{1/2}과 P_{3/2}로 2.79, 4.77 eV정도 각각 splitting되므 로 전자구조에 많은 변화를 가져온다.
- Electronic configuration
 - 113 : [core] 7s² 7p_{1/2}¹
 - 114 : [core] 7s² 7p_{1/2}²
- 114번의 경우는 closed shell 형태가 되므로 inert한 성질을 가질 것으로 예측된다.

Computational Details

- **Basis & RECP**
 - TI: Christiansen et al., [4s5p5d]
 H: (5s1p) / [3s1p]
 - Pb : Christiansen *et al.*, [5s5p6d]
 - 113 : Nash et al., [6sd6p]
 - 114 : Nash et al., [6sd6p]

- F : (9s5p1d) / [4s2p1d]
- RECP(Relativistic Effective Core Potential) 는 Dirac–Fock valence spinor와 spinor energy에서 유도된 REP와 spin-weighted potential average scheme을 이용한 AREP를 사용하였다.
- HF수준에서 AREP, REP 각각 geometry optimization과 normal mode analysis를 수행하였고 CCSD(T)수준으로 single point 계산 을 수행하였다.
- AREP계산은 Gaussian 94, ACES II를 이용하였고, REP계산은 KRHF와 KRCC program을 이용하였다.

Molecular geometries of the TI and Pb compounds.

All bond lengths are in Å and all angles are in degrees.

Molecular geometries of the 113 & 114 compounds.

All bond lengths are in Å and all angles are in degrees.

AREP(REP) optimized geometries of 113H₃

113H₃, 113F₃인 경우 AREP, REP에서 모두 optimized geometry가 D_{3h}가 아닌 C_{2v}였으며, 에너지 차이는 각각 1.09, 0.82 eV로 근소한 차이를 보였다.

Vibrational frequencies of TI and Pb compounds.

All frequencies are in cm⁻¹.

)						AREP	REP	$\Delta_{\rm so}$
		AREP	REP	$\Delta_{\rm so}$	PbH ₂	A ₁	805	794	-11
TIH	$\sum_{\mathbf{q}}$	1410	1442	32	L	B_2	1679	1682	3
	<u>9</u>	100				A_1	1681	1695	14
IF	Σ_{g}	480	483	3	PhF.	Α.	177	178	1
0						B_{n}	542	547	5
					9	A_1^2	562	565	3
		AREP	REP	Δ_{aa}		I			
					0		AREP	REP	$\Delta_{\rm so}$
TIH ₃	E'	584	586	2			AREP	REP	Δ_{so}
TIH ₃	E' A ₂ "	584 687	586 688	<u>so</u> 2 1	PbH ₄	T ₂	AREP 690	REP 690	Δ_{so} 0
TIH ₃	E' A ₂ " E'	584 687 1865	586 688 1874	3 2 1 9	PbH ₄	T ₂ E	AREP 690 769	REP 690 771	Δ_{so} 0 2
TIH ₃	E' A ₂ " E' A ₁ '	584 687 1865 1911	586 688 1874 1923	<u>so</u> 2 1 9 12	PbH ₄	T ₂ E T ₂	AREP 690 769 1958	REP 690 771 1957	Δ _{so} 0 2 -1
TIH ₃	E' A ₂ " E' A ₁ '	584 687 1865 1911	586 688 1874 1923	2 1 9 12	PbH ₄	T_2 E T_2 A ₁	AREP 690 769 1958 1974	REP 690 771 1957 1981	Δ _{so} 0 2 -1 7
TIH ₃	E' A ₂ " E' A ₁ ' E'	584 687 1865 1911 92	586 688 1874 1923 92	2 1 9 12 0	PbH ₄	T_2 E T_2 A_1	AREP 690 769 1958 1974	REP 690 771 1957 1981	Δ _{so} 0 2 -1 7
TIH ₃	E' A ₂ " E' A ₁ ' E' A ₂ "	584 687 1865 1911 92 142	586 688 1874 1923 92 142	2 1 9 12 0 0	PbH ₄	$\begin{array}{c} T_2\\E\\T_2\\A_1\\T_2\end{array}$	AREP 690 769 1958 1974 157	REP 690 771 1957 1981 158	Δ _{so} 0 2 -1 7
TIH ₃	E' A ₂ " E' A ₁ ' E' A ₂ " E'	584 687 1865 1911 92 142 612	586 688 1874 1923 92 142 613	2 1 9 12 0 0 1	PbH ₄	$\begin{array}{c} T_2\\ E\\ T_2\\ A_1\\ T_2\\ E\end{array}$	AREP 690 769 1958 1974 157 122	REP 690 771 1957 1981 158 123	Δ _{so} 0 2 -1 7 1
TIH ₃	E' A ₂ " E' A ₁ ' E' A ₂ " E' A ₂ "	584 687 1865 1911 92 142 612 616	586 688 1874 1923 92 142 613 618	2 1 9 12 0 0 1 2	PbH ₄	$ \begin{array}{c} T_2 \\ E \\ T_2 \\ A_1 \\ T_2 \\ E \\ T_2 \\ E \\ T_2 \end{array} $	AREP 690 769 1958 1974 157 122 656	REP 690 771 1957 1981 158 123 657	Δ _{so} 0 2 -1 7 1 1

Vibrational frequencies of 113 and 114 compounds.

All frequencies are in cm⁻¹.

 $\Delta_{\rm so}$

-73

36

8

-8

6

 $\Delta_{\rm so}$

-16

-12

-87

28

-5

1

-6

5

-219

(AREP	REP
			AREP	REP	$\Delta_{\rm so}$	 114H ₂	A ₁	743	670
	113H	\sum_{α}	1187	1618	431	Z	B_2	1469	1250
		y	101	442	10		A ₁	1552	1588
	ПЭГ	Ľg	431	443	١Z	$114F_{2}$	A ₁	131	139
	P						B_2	494	486
							A_1	516	522
C			AREP	REP	$\Delta_{\rm so}$			ADED	DED
	113H ₂	E'	-164	-158	6				
	3	A ₂ "	815	820	5	$114H_4$	T_2	508	492
		E	1864	1883	19		Е	645	633
		A ₁ '	1936	2049	113		T_2	1849	1762
		'					A_1	1826	1854
	113F ₃	Ε'	-149	-156	-7		 -		01
		A ₂ "	152	158	6	114F ₄		86	81
		E'	521	527	6		E	17	18
		A ₁ '	559	569	10		T_2	549	543
							A_1	531	536

M-X bond energies of TI and Pb compounds.

All energies are in kcal/mol.

		HF			CCSD(1	Г)
	AREP	REP	$\Delta_{\sf so}$	AREP	REP	$\Delta_{\rm so}$
TIH	38.4	26.3	-12.1	54.7	43.7	-11.0
TIH ₃	34.8	31.0	-3.8	46.8	43.4	-3.4
TIF	74.1	59.6	-14.5	109.9	96.8	-13.1
TIF ₃	37.0	32.5	-4.5	67.4		
PbH ₂	36.7	27.1	-9.6	54.3	41.8	-12.5
PbH_4	37.9	32.7	-5.2	52.1	45.5	-6.6
PbF_{2}	64.8	52.8	-12.0	102.3	87.7	-14.6
PbF₄	39.9	34.0	-5.9	73.5		

M-X bond energies of 113 and 114 compounds.

All energies are in kcal/mol.

		HF			Г)	
	AREP	REP	$\Delta_{\rm so}$	AREP	REP	$\Delta_{\rm so}$
113H	31.6	7.4	-24.2	50.7	30.8	-19.9
113H ₃	18.1	9.5	-8.6	37.6	30.4	-7.2
113F	64.1	14.1	-50.0	99.7	56.1	-43.6
113F ₃	-6.9	-22.5	-15.6	36.6		
114H ₂	31.0	-11.4	-42.4	51.1	11.4	-39.7
$114H_{4}^{-}$	20.8	-3.9	-24.7	40.8	17.3	-23.5
$114F_{2}$	54.5	-4.8	-59.3	90.8	37.0	-53.8
$114F_{4}^{-}$	0.1	-29.8	-29.9	45.5		

Summary

- 113, 114 화합물의 bond length는 spin-orbit 효과에 의해 0.30 Å이내로 감소하였다. 예측되는 bond length는 TI, Pb화합물에 비해 비슷하거나 약간 크게 나타났지만, 113H과 113H₃의 경우는 오히려 줄어들었다.
- Bond length와 vibrational frequency의 spin-orbit 효과에 의한 변화는 hydride의 경우에서 크게 나타났다. Fluoride의 경우 electronegative fluorine이 p_{1/2}전자를 더 많이 끌어당기므로 분자상태에서의 spin-orbit 효과가 감소하기 때문이다.
- Spin-orbit 효과가 bond energy에 미치는 영향(∆_{so})은 fluoride의 경우 크 게 나타난다. bond energy의 ∆_{so}는 원자상태의 spin-orbit 효과와 분자 상태의 spin-orbit 효과의 차이에 의해 나타나는데, fluoride는 분자상태 의 spin-orbit 효과가 감소하여 ∆_{so}가 크게 나타난다.
- 113, 114의 화합물이 합성된다면 ligand와 매우 약한 결합을 하고 있을 것으로 예상되며, 이러한 경향성에는 spin-orbit 효과가 중요한 역할을 하고 있음을 확인할 수 있다.