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Abstract
We present a Floquet investigation of multiphoton quantum 
interference in a strongly driven superconducting qubit.  The 
procedure involves a transformation of a time-dependent 
problem into an equivalent time-independent infinite-
dimensional Floquet matrix eigenvalue problem.  The results of a 
two-level qubit system show quantum interference fringes 
around multiphoton resonance positions in agreement with the 
experimental results1).  We further explore the interference 
patterns in terms of quasienergies and the resonance position 
shifts as the tunneling strength increased.  The Floquet 
formulation promises a new and accurate approach for the 
investigation of quantum interference phenomenon in the 
qubits.



Introduction

• SQUID: Superconducting Quantum Interference Devices

• Superconducting qubit which has two magnetic flux 
states is a promising candidate for quantum computing.

• Recent experiments demonstrate quantum interference 
fringes around multiphoton resonance positions in a 
strongly driven superconducting qubit1,2).



Computational Details
Two-level qubit 
without RF field

Two-level qubit 
driven by RF field
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where ε(t) = ε0 + Arf cos ωt

∆: tunneling strength, ε0: flux detuning, Arf: RF field amplitude
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−iεt/!Φ(t) where ε is the quasienergy
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Floquet state: |αn⟩ = |α⟩ ⊗ |n⟩

⇒ ⟨αn|ĤF |βm⟩ = H
[n−m]
αβ + nωδαβδnm

Floquet theorem3)

Equivalent time-independent eigenvalue problem
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Floquet matrix structure Time-dependent Hamiltonian

Fourier components
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Time-dependent wavefunction:

Time-averaged switching probability:
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uses two beamsplitters: The first divides an
optical signal into two coherent waves that
travel along paths with different effective
lengths, and the second recombines and
superposes these waves, leading to quantum
interference fringes in the measured output
signal. In a driven qubit, according to an
idea discussed by Shytov et al. (19), the
beamsplitters can be realized by Landau-
Zener (LZ) transitions at a level avoided
crossing. Over one oscillation period of the
driving field, the qubit is swept through the
avoided crossing twice (Fig. 1A). Starting
from the marker, at the first LZ transition
(time t1), the ground state k0À is split into a
coherent superposition of the ground and ex-
cited states, k1À and k0À, which, after evolving
independently and accumulating a relative
phase Dq12, interfere at the second LZ
transition (time t2). The corresponding qubit-
state energy evolution (first period, Fig. 1B)
between the recurrent LZ transitions (shaded
region) provides a phase-space analog to
the two arms and the beamsplitters of an
optical MZ interferometer (top left, Fig. 1B).
The interference phase

Dq12 0
1

I

Z t2

t1

eðtÞdt; eðtÞ 0 ek0ÀðtÞ j ek1ÀðtÞ

ð1Þ

where I 0 h /2p, h is the Planck constant, and
e is the energy difference between states k0À
and k1À, depends on the magnitude of the qubit
energy detuning excursion for times t1 G t G t2.
The interference fringes in the occupation prob-
ability correspond to integer and half-integer
values of Dq12/2p. Known as St[ckelberg os-
cillations with Rydberg atoms (20, 21), this

mechanism can be applied to quantum con-
trol (22).

The qubit MZ interferometer differs in a
number of ways from an optical interfer-
ometer. First, instead of a photon, the in-
terferometry is performed with the use of
the quantum state of a qubit. Second, in the
qubit, we have the interference of paths in
phase space rather than in coordinate space;
the phase Dq12 (Eq. 1) is determined by the
qubit level splitting, which plays the role
of the optical path length. Finally, because
they are more fragile than photons and easier
to decohere, qubit states can be manipulated
in a coherent fashion only at relatively short
time scales.

We used a periodic driving signal, a har-
monic variation of the qubit detuning e(t)

H 0 Y
1

2
ðDs x þ eðtÞs zÞ;

eðtÞ 0 e0 þ Arf coswt ð2Þ

where D is the tunnel splitting, sx and sz

are Pauli matrices, e0 is the detuning pro-
portional to dc flux bias, and Arf is the
radio frequency (rf) field amplitude pro-
portional to the rf flux bias (23). In this case
(Fig. 1B), we have cascaded LZ transitions
which occur when the driving amplitude ex-
ceeds detuning, giving rise to the interference
fringes at Arf 9 ke0k (Fig. 1C). Although the
phase Dq12 equals the shaded area in Fig.
1B and is dependent on Arf , the total phase
gained over one period, q 0 E1/I^Xe(t)dt 0
2pe0/Iw, equals the difference of the
shaded and unshaded areas and is in-
dependent of Arf . As consecutive pairs of
LZ transitions (consecutive MZ interfer-

ometers) interfere constructively when q 0
2pn, the fringes will appear around the
resonance detuning values

e0;n 0 nh n ð3 Þ

where n 0 0, 1, 2, I and n 0 w/2p. Another
interpretation of this condition is that the
sequential LZ transitions excite multipho-
ton resonances.

Although coherent multiphoton reso-
nances between discrete states of an rf-
driven charge qubit have been reported (5, 24)
and multiphoton transitions used to drive
Rabi oscillations in a flux qubit (25, 26), in
these works as well as in the earlier work
on quantum dot systems (27, 28), only a
few photon transitions could be observed,
with coherence quickly weakening as rf am-
plitude increased (29). In contrast, we were
able to observe coherent resonances of very
high order, up to n 0 20, which requires
driving the system at a high rf amplitude.
The fringes for high n are as clear as those
for n ; 1, indicating that the qubit preserves a
substantial amount of coherence even in the
strongly driven regime.

We realized a tunable artificial atom with
a niobium persistent-current qubit (Fig. 2A),
a superconducting loop interrupted by three
Josephson junctions (30). When the qubit
loop is threaded with a magnetic flux fq ,
F0/2, the system exhibits a double-well
potential-energy landscape (fig. S1). The
classical states of the wells are persistent
currents Iq with opposing circulation, de-
scribed by energy bands Te0/2 0 TIqF0dfq
linear in the flux detuning dfq K fq j F0/2.
The double-well barrier allows quantum
tunneling of strength D, opening the avoided

Fig. 1. MZ interference in a strongly driven
qubit. (A) Starting at the dot marker, the qubit
state is swept by an rf field. After an LZ
transition at the first avoided crossing (time t1),
the resulting superposition state of k0À and k1À
(dashed lines) accumulates a phase Dq12 (shaded
region) and interferes at the return LZ transition
(time t2). The qubit state is subsequently driven
away from the avoided crossing and then returns
to the starting flux position. This single period of
qubit evolution is a single MZ interferometer.
Depending on the interference phase Dq12,
amplitude may build in the excited state. a.u.,
arbitrary units. (B) The corresponding qubit
energy variation induced by a periodic rf field,
Eq. 2, results in an equivalent optical cascade of
MZ interferometers (MZ#1 to #3, top) with
resonance condition Eq. 3. (C) The population of
the qubit excited state, Eq. 6 , as a function of rf
amplitude Arf and detuning e0. Note the
interference fringes (I to VI) at Arf 9 e0 and the
multiphoton resonances at e0 0 nhn.
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Mean energy4) is computed from eigenvectors:

Analogue of Mach-
Zehnder interference*

Constructive interference 
condition with the phase:

∆θ = 2πn

* Picture taken from Oliver et al., Science 310, 1653 (2005)1)

Constructive interference condition 
with the mean energy:
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Plots of mean energies show the 
same interference fringes.

Comparison with switching probability and mean energy
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Conclusion

• The plots of switching probabilities show quantum 
interferences due to accumulated phase difference in 
agreement with the experimental results.

• The phase difference can be derived from the mean 
energy (quasi-energy), and the mean energy plot shows 
the same interference patterns.

• Resonance position shifts are observed as the tunneling 
strength increases.

• The Floquet formalism is extended to investigate 
quantum interference phenomenon in the qubits.
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