»ó±æ! ȨÆäÀÌÁö »ó±æÀ̸¦ ¸¸³ª¿ä| ZanNavi's space
  ÇöÀçÀ§Ä¡ ► ZanNavi's space : iBib : BibTeX / Abstract  

----------------------------------------------------------------------
iBib | list | admin

BibTeX file of [Son11a] [show it without abstract]

@article{Son11a,
    author={Sang-Kil Son and Linda Young and Robin Santra},
    title={Impact of hollow-atom formation on coherent x-ray scattering at high intensity},
    journal={Phys. Rev. A},
    volume={83},
    pages={033402},
    year={2011},
    keywords={hollow-atom; damage; ionization; Auger; fluorescence; x-ray scattering; x-ray diffraction; molecular imaging; frustrated absorption; C; XATOM; XFEL; CFEL; DESY;},
    url={https://doi.org/10.1103/PhysRevA.83.033402},
    doi={10.1103/PhysRevA.83.033402},
    abstract={X-ray free-electron lasers (FELs) are promising tools for structural determination of macromolecules via coherent x-ray scattering. During ultrashort and ultraintense x-ray pulses with an atomic scale wavelength, samples are subject to radiation damage and possibly become highly ionized, which may influence the quality of x-ray scattering patterns. We develop a toolkit to treat detailed ionization, relaxation, and scattering dynamics for an atom within a consistent theoretical framework. The coherent x-ray scattering problem including radiation damage is investigated as a function of x-ray FEL parameters such as pulse length, fluence, and photon energy. We find that the x-ray scattering intensity saturates at a fluence of $\sim 10^{7}$ photons/\AA$^2$ per pulse, but can be maximized by using a pulse duration much shorter than the time scales involved in the relaxation of the inner-shell vacancy states created. Under these conditions, both inner-shell electrons in a carbon atom are removed, and the resulting hollow atom gives rise to a scattering pattern with little loss of quality for a spatial resolution $> 1$~\AA. Our numerical results predict that in order to scatter from a carbon atom 0.1 photons per x-ray pulse, within a spatial resolution of 1.7~\AA, a fluence of $1\times 10^{7}$ photons/\AA$^2$ per pulse is required at a pulse length of 1~fs and a photon energy of 12~keV. By using a pulse length of a few hundred attoseconds, one can suppress even secondary ionization processes in extended systems. The present results suggest that high-brightness attosecond x-ray FELs would be ideal for single-shot imaging of individual macromolecules.} }



Sang-Kil Son, Linda Young, and Robin Santra, Impact of hollow-atom formation on coherent x-ray scattering at high intensity, Phys. Rev. A 83, 033402 (2011) [pdf][pdf][abstract][abstract][link]doi:10.1103/PhysRevA.83.033402


made by ZN

----------------------------------------------------------------------

ÀÌ ÆäÀÌÁöÀÇ ÃÖÁ¾¼öÁ¤ÀÏ: 2017.9.3
Copyright (C) 2000-2024 ¼Õ»ó±æ
ÀúÀ۱ǿ¡ ´ëÇÑ º» »çÇ×ÀÌ ¸í½ÃµÇ´Â ÇÑ, ¾î¶°ÇÑ Á¤º¸ ¸Åü¿¡ ÀÇÇÑ º»¹®ÀÇ ÀüÀ糪 ¹ßÃéµµ ¹«»óÀ¸·Î Çã¿ëµË´Ï´Ù. [copyleft]